合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 聚氧乙烯链长度调控非离子Gemini表面活性剂的表面张力、接触角(四)
> 纳米乳液的类型、制备、粒径分布、界/表面张力、接触角和Zeta电位
> 人从高处跳水会在水面摔死吗?这与水面张力有何关系
> 热力学模型计算MgO-B2O3-SiO2-CaOAl2O3富硼渣表面张力(二)
> 涂料配方设计如何选择润湿剂?表面张力成为重要决定因素之一
> 聚氧乙烯链长度调控非离子Gemini表面活性剂的表面张力、接触角(三)
> 人胰岛素的朗缪尔单分子层膜的表面化学和光谱学性质——实验部分
> 有机农药光催化降解机理研究进展
> 什么叫界面?基于动态悬滴表征的界面性质精确测定方法
> 不同温度下手性离子液体及二元混合物的密度和表面张力(下)
推荐新闻Info
-
> 基于表面张力等分析油酸钠体系下磁化处理对赤铁矿和石英浮选分离效果的影响
> 浮选药剂的性能、组合用药机理及协同效应的影响因素(二)
> 浮选药剂的性能、组合用药机理及协同效应的影响因素(一)
> 不同质量浓度、pH、盐度对三七根提取物水溶液表面张力的影响(三)
> 不同质量浓度、pH、盐度对三七根提取物水溶液表面张力的影响(二)
> 不同质量浓度、pH、盐度对三七根提取物水溶液表面张力的影响(一)
> 氟硅表面活性剂(FSS)水溶液表面张力、发泡力、乳化力测定(三)
> 氟硅表面活性剂(FSS)水溶液表面张力、发泡力、乳化力测定(二)
> 氟硅表面活性剂(FSS)水溶液表面张力、发泡力、乳化力测定(一)
> 不同配方的水性氟丙树脂涂料涂膜合成、性能指标
双内凹结构表面可实现对低表面张力液体的稳固超排斥
来源:哈工大郑州研究院 哈尔滨工业大学 浏览 682 次 发布时间:2024-02-28
由于较低的表面张力,油滴很容易在固体表面铺展润湿,从而降低整个体系的界面自由能,因此,实现低表面扎张力的超排斥相对来说比较困难。为了实现低表面张力油的超排斥,目前有相关研究人员提出了双内凹结构,通过双内凹结构能够有效锁定固-液-气三相接触线,阻止液体沿着表面微结构向下滑移,从而将液体支撑在微结构空气层上面而实现对不同液体的有效排斥。
但是,现有技术中制备得到的双内凹结构尺寸均在几十微米以上,虽然能够实现低表面张力液体的超排斥,但这种排斥性极不稳定,如空气流动或者液滴自身运动都会导致液体塌陷并湿润固体表面。
一种制备更小尺寸双内凹结构的方法,提高对低表面张力液体的超排斥能力,提升稳定性。
为解决上述问题,本发明提供一种微米双内凹结构表面的制造方法,包括以下步骤:
步骤S1、在半导体材料的表面设置光刻胶层;其中,所述半导体材料包括上下设置的硅层和二氧化硅层,所述光刻胶层设置在所述二氧化硅层远离所述硅层一侧的表面上;
步骤S2、对所述光刻胶层进行第一刻蚀,使预设微图案转移至光刻胶层上,得到光刻胶掩模板;其中,所述预设微图案为圆孔阵列结构,所述圆孔阵列结构中相邻圆孔的间距相同;
步骤S3、根据所述光刻胶掩模板,对所述二氧化硅层进行第二刻蚀,在所述二氧化硅层上与所述预设微图案对应位置形成第一圆柱孔阵列,所述第一圆柱孔阵列中包括多个周期性阵列的第一圆柱孔,得到第一刻蚀半导体材料;
步骤S4、在所述二氧化硅层中所述预设微图案的对应区域,沿所述第一圆柱孔的轴向对所述硅层进行第三刻蚀,在所述硅层中形成与所述第一圆柱孔对应的第二圆柱孔,然后去除所述光刻胶掩膜板,得到第二刻蚀半导体材料;
步骤S5、在所述第二刻蚀半导体材料中具有所述二氧化硅层的一侧沉积二氧化硅,形成沉积二氧化硅层,然后通过刻蚀去除位于所述第二圆柱孔底部的所述沉积二氧化硅层,得到第三刻蚀半导体材料;
步骤S6、采用深反应离子刻蚀机的Bosch工艺,对所述第二圆柱孔中的所述硅层进行各向异性刻蚀,得到第四刻蚀半导体材料;
步骤S7、继续对所述第二圆柱孔中所述硅层进行各向同性刻蚀,在所述半导体材料上形成了微米双内凹结构表面。
综上所述,本发明实施例能够在材料表面通过微加工的方式制备了特征尺寸在10微米以下的双内凹结构表面,所制备表面具有较大的突破压和界面稳固因子,可实现对低表面张力液体的稳固超排斥。